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Abstract 

In this paper, we characterize application 
performunce with a “memory-centric” view. Using a 
simple strategy and performance data measured on 
actual mclchines, we model the performance of a simple 
memory hierarchy and infer the contribution of each 
level in the memory system to an application’s overall 
cycles per instruction (cpi). Included are results 
@rming the usefulness of the memory model over 
several platforms, namely the SGI Origin 2000, SGI 
PowerChallenge, and the Intel ASCI Red TFLOPS 
supercomputers. We account for the overlap of 
processor execution with memory accesses - a key 
parameter, which is not directly measurable on most 
systems. Given the system similarities between the 
Origin 2000 and the PowerChallenge, we infer the 
separate contributions of three major architecture 
features in the memory subsystem of the Origin 2000. 
cache size, outstanding loads-under-miss, and memory 

latency. 
Keywords.. performance evaluation, cache, memory 
subsystem, computer architecture, and microproce.ssor 

1. Introduction 

The performance and scalability of high performance 
scientific applications on large-scale parallel machines 
are more dependent on the hierarchical memory 
subsystems of these machines than the peak instruction 
rate of the processors employed [l-2]. A few attempts 
[ 14, 151 have been made to characterize the memory 
system performance impact on the total runtime. Many 
architectural improvements such as out-of-order 
execution and more outstanding misses are widely 

studied by simulations. However, studying the 
performance impact of memory subsystem and processor 
architecture improvements based on real applications on 
production machines is rarely attempted. Such studies 
promise insight for engineers in future architectural 
design improvements and will provide information that 
software engineers can use to improve code performance 
in scalable environments. 

In this paper, we model real application performance 
with a “memory-centric” view. The applications and 
their realistic problem sizes are a representative part of 
the Los Alamos National Laboratory (LANL) 
computational physics workload and most have been 
designed with referential locality in mind. Instruction- 
level simulation of even small problem sets would 
require at least 12-36 hours and we thus resort to 
experimental techniques and modeling to understand the 
effect of changes in major architectural parameters. 
Using overall average effect strategy and empirical 
performance data from hardware performance counters, 
we infer the contribution of each level in the memory 
system to the application’s overall cycles per instruction 
(cpi). We account for the overlap of processor execution 
with memory accesses - a key performance parameter 
that is not directly measurable on most systems. 

Performance data on the application codes are 
obtained on the latest Origin 2000 systems and Power 
Challenge machines from SGI, along with the Intel ASCI 
Red TFLOPS machine. This paper discusses only single 
node executions. The SGI machines provide a unique 
performance evaluation opportunity since the 
architectures employ identical RlOK processors but 
differ significantly in the design of the memory 
subsystems so that performance studies due solely to the 
memory architecture are possible. The same executables 
are used on both Origin2000 and PowerChallenge to 
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eliminate software difference. In particular, there are 
three major memory architecture differences: 1) 
secondary cache size, 2) latencies to the main memory, 
and 3) number of outstanding cache misses. Thus, we are 
able to infer the separate contribution of each of these on 
the performance of the application benchmarks. 

The following sections of this paper describe: the 
parts of the machine architecture relevant to this work, 
small descriptions of the codes from the Los Alamos 
National Lab computational physics workload, the model 
and empirical methodology, validation of the model, 
results, analysis and major conclusions. 

2. Architecture descriptions 

2.1. Origin 2000 and PowerChallenge 

The PowerChallenge is an SMP architecture that 
employs a central bus to interconnect memories and 
processors [3]. The bus bandwidth (1.2 Gbytes/sec) does 
not scale with more processors. Cache coherence is 
maintained through a snoopy bus protocol which 
broadcasts cache information to all processors connected 
to the bus. The Origin 2000, on the other hand, is a 
distributed shared memory (DSM) architecture which 
uses a switch interconnect that improves scalability by 
providing interconnect bandwidth proportional to the 
number of processors and memory modules [4]. 
Coherence is maintained by a distributed directory-based 
scheme. Figure 1 shows a network view of the machine. 
Each router in the hypercube topology connects two 
nodes to the network. Each node contains two 
processing elements and one local memory unit. A 128- 
processor system, for example, consists of a fifth-degree 
hypercube with 4 processors per router. 

The processing elements of both the Origin 2000 and 
PowerChallenge systems use a 200MH.z MIPS RlOOOO 
microprocessor. The processor is a 4-way super-scalar 
architecture which implements a number of innovations 
to reduce pipeline stalls due to data starvation and 
control flow [5]. For example, instructions are initially 
decoded in-order, but are executed out-of-order. Also, 
speculative instruction fetch is employed after branches. 
Register renaming minimizes data dependencies between 
floating-point and fixed-point unit instructions. Logical 
destination register numbers are mapped to the 64 integer 
and 64 floating point physical registers during execution. 
The two programmable performance counters track a 
number of events [6] and were a necessity for this study. 
The most common instructions typically have one- or 
two-clock latencies. 

1 Origin 2000 Topology 

Figure 1. Origin 2000 topology for 32-proc 
system 

While the processing elements of the PowerChallenge 
and Origin 2000 systems are identical, there are major 
differences in the memory architecture and 
corresponding performance of the two systems. The 
PowerChallenge is an UMA architecture with a latency 
of 205 clocks (1025 ns). Latencies to the memory 
modules of the Origin 2000 system, on the other hand, 
depend on the network distance from the issuing 
processor to the destination memory node. Accesses 
issued to local memory take about 80 clocks (400 ns) 
while latencies to remote nodes are the local memory 
time plus 33 clocks for an off-node reference plus 22 
clock periods (CP; 110 ns) for each network router 
traversed. In the case of a 32 processor machine, the 
maximum distance is 4 routers, so that the longest 
memory access is about 20 1 clocks (1005 ns) which is 
close to the uniform latency of the PowerChallenge. 
This unique feature of Origin 2000 systems provides us a 
good opportunity to adjust the memory access latency by 
placing memory and execution thread on different nodes. 

In addition, improvements in the number of 
outstanding loads that can be queued by the memory 
system were made. Even though the RlOOOO processor 
is able to sustain four outstanding primary cache misses, 
external queues in the memory system of the 
PowerChallenge limited the actual number to less than 
two. In the Origin 2000, the full capability of four 
outstanding misses is possible. The L2 cache sizes of 
these two systems are also different. A processor of 
PowerChallenge can be equipped up to 2MB L2 cache 
while a CPU of Origin 2000 system always has a L2 
cache of 4MB. 

153 



2.2. Intel ASCI Red TFLOPS Supercomputer 

The ASCI Red Supercomputer is a Massively Parallel 
Processor (MPP) with a distributed memory Multiple- 
Instruction, Multiple Data (MIMD) architecture [ 161. 
All aspects of this system architecture are scalable, 
including communication bandwidth, main memory, 
internal disk storage capacity, and I/O [ 171. The ASCI 
Red maintains communication through an 
Interconnection Facility (ICF) in a 38x32~2 topology 
with a peak (sustainable) bi-directional bandwidth of 800 
MB/set [ 161. A Kestrel board holds two compute nodes 
connected through a Network Interface Chip (NIC) and 
attached to a Mesh Router Chip (MRC). The memory 
subsystem on an individual compute node is 
implemented using the Intel 82453 Chipset with 128 
MB/node. 

ASCI Red is composed of 9,216 processors providing 
4,536 compute nodes. Each compute node consists of 
two 200 MHz Pentium Pro Processors. The 200 MHz 
Pentiurn Pro processor is a 3-way super-scalar 
architecture that reduces pipeline stalls utilizing features 
such as out-of-order execution, speculative execution of 
branches, and register renaming. Two programmable 
performance counters are also available, providing the 
data used in this study. Each processor includes separate 
8KB data and instruction caches along with 256KB 
secondary L2 cache. This L2 cache is located on a 
separate die in the same package closely coupled via a 
dedicated 64-bit full-clock-speed backside cache bus. 
The Ll data cache can handle as many as four 
outstanding misses and has a miss latency of three 
cycles, whereas the L2 cache miss latency is about 50 
cycles [15]. Only one CPU on a node is used for this 
experiment. 

3. LANL benchmark code information 

Four applications that form the building blocks for 
many nuclear physics simulations were used in this 
study. A performance comparison of the Origin and 
PowerChallenge architectures has been done using these 
codes [7]. 

3.1. Code descriptions 

SWEEP3D is a three dimensional solver for the time 
independent, neutral particle transport equation on an 

orthogonal mesh [8]. In SWEEP3D, the main part of the 
computation consists of a “balance” loop in which 
particle flux out of a cell in three Cartesian directions is 
updated based on the fluxes into that cell and on other 
quantities such as local sources, cross section data, and 
geometric factors. The cell-to-cell flux dependence, i.e., 
a given cell cannot be computed until all of its upstream 
neighbors have been computed, implies a recursive or 
wavefront structure. The specific version used in these 
tests was a scalar-optimized “line-sweep” version [Koch] 
that involves separately nested, quadrant, angle, and 
spatial-dimension loops. In contrast with vectorized 
plane-sweep versions of SWEEP3D, there are no 
gather/scatter operations and memory traffic is 
significantly reduced through “scalarization” of some 
array quantities. Because of these features, Ll cache 
reuse on SWEEP3D is fairly high (the hit rate is about 
85%). A problem size of N implies N’ grid points. 

HYDRO is a two-dimensional explicit Lagrangian 
hydrodynamics code based on an algorithm by W. D. 
Schulz [9]. HYDRO is representative of a large class of 
codes in use at the Laboratory. The code is 100% 
vectorizable. An important characteristic of the code is 
that most arrays are accessed with a stride equal to the 
length of one dimension of the grid. HYDRO-T is a 
version of HYDRO in which most of the arrays have 
been transposed so that access is now largely unit-stride. 
A problem size of N implies NZ grid points. 

HEAT solves the implicit diffusion PDE using a 
conjugate gradient solver for a single timestep. The code 
was written originally for the CRAY T3D using 
SHMEM. The key aspect of HEAT is that its grid 
structure and data access methods are designed to 
support one type of adaptive mesh refinement (AMR) 
mechanism, although the benchmark code as supplied 
does not currently handle anything other than a single- 
level AMR grid (i.e. the coarse, regular level-l grid 
only). A problem size of N implies N3 grid points. 

NEUT is a Monte-Carlo particle transport code. It 
solves the same problem as SWEEP3D but uses a 
statistical solution of the transport equation. Particles are 
individually tracked through a three dimensional mesh 
where they have some probability of colliding with cell 
material. The output from the particle tracking is a 
spatial flux discretized over the mesh. Vector (or data 
parallel) versions of this type of code exist which track 
particle ensembles rather than individual ones. A 
problem size of N implies N’ grid points and 10 particles 
per grid point. 
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Figure 2. Performance of HEAT as a function of linear problem size. The right axis shows cache hit 
rates and normalized MFLOPS. 
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Figure 3. Performance of SWEEP as a function of linear problem size 
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Figure 4. Performance of HYDRO as a function of linear problem size. 

155 



w -“.9 1.5 
- ffl 

8 1.5 - -0.0 $ 0.8 --4-- Ll HR RATE 

- LZHII RATE 

-0.7 - NORM. MFLCPS 

1’ 8 8 n&C 
100 150 200 250 300 100 150 200 250 300 

Problem Size 
Problem Sire 

PO wer Chal 
Origin 2000 

Figure 5. Performance of HYDRO-T as a function of linear problem size. 
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Figure 6. Performance of NEUT as a function of linear problem size. 

3.2. Performance characteristics 

In this section we present some single-processor 
characteristics of the benchmark codes as obtained from 
performance counters on the Origin 2000. Note that the 
maximum MFLOPS observed may, in some cases, be 
obtained from unreasonably-small problem sizes relative 
to actual production runs; the data are presented here 
merely as a reference for the normalized Mflop curves in 
Figures 2-6. 

Detailed performance characteristic data for these 
codes were collected on a I-MB L2 PowerChallenge 
system and a 4-MB L2 Origin2000 system. Performance 
data as a function of problem size for the Power 
Challenge and Origin are illustrated in Figures 2 through 
6. MFLOPS curves are normalized such that the 
maximum rate for each code is one. 

The codes’ overall cpi curves are generally the 
inverse of their corresponding MFLOPS curves; that is, 
an increasing cpi corresponds to a decreasing MFLOPS 

at nearly the same slope and vice versa. The cpi of three 
of the codes (HEAT, HYDRO and SWEEP) is strongly 
dependent on problem size. 

The above figures show that normalized MFLOPS 
curves (except for HYDRO-T) follow the tendencies of 
the L2-hit curves. On the PowerChallenge system, a 
drop in L2-hit rate causes much more impact to 
MFLOPS than it does on the Origin system. This is due 
to lower memory latency (both actual and effective) on 
the Origin2000 system. Although not shown in the 
figures, we calculated TLB hit ratio and branch 
prediction hit ratio. The calculation shows that MIPS 
RIO000 processor can do a good job of speculative 
branch prediction. All four benchmark codes (HEAT, 
HYDRO, HYDRO-T and SWEEP) have branch 
prediction hit ratios over 99%. This means that over 
99% of speculated branch predictions are taken in real 
executions. TLB hit ratios for all these codes are higher 
than 98%. This high TLB hit ratio implies that the 
impact of TLB misses can be ignored for these data sets. 
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4. Model description 

The analysis in the following sections uses a 
simplified mean value parameterization [ 1 l] to separate 
CPU execution time from stall time due to memory 
loads/stores. Figure 7 is a pictorial description of the 
times in the model. 

h,Tm 

Figure 7. Relationship of modeled times 

The model projects the overall cpi of an application as 
a function of CPU execution time and average memory 
access times: 

nleve1.s 

cpi = cpio + c hi * ti (1) 
i=2 

where cpio is defined to be the cpi of the application 
assuming that all memory accesses are from an infinite 
Ll cache and take 1 CP (i.e., the i=l term is included in 
cpi,), and h, and t, are, correspondingly, the hits per 
instruction and average non-overlapped access times for 
the ith level in the memory hierarchy. Measured access 
times at the ith level correspond to access time from 
level i to the registers. The second term of Eq. 1 is also 
referred to as cpi,,:,,, 

If no overlap of CPU execution and memory accesses 
occur, every memory access to the ith level incurs the 
full round-trip latency, which we denote as T,. We define 
(following Larson [ 121) a measure of the overlap of 
memory accesses with computation as m,, where 

cpi = cpi,+ (l-m, ) c hi * Ti 
j= 2 

(2) 

and, from Eq 1, m, is one minus the ratio of the average 

memory access time to the maximum memory access 
time: 

nlevels 
C 

^ 
hi *ti 

(3) 

We note here that the separation of computational 
time from memory access time in this model implies that 
the two can be treated independently (i.e., that cpi, is 

constant). In fact, the out-of-order execution of the 
RlOOOO processor means that different dynamic 
instruction sequences will be seen for different size 
problems. The assumption that this effect is small is 
tested with an RlOOOO simulator in a later section. 

The effect of increasing the round-trip memory 
latency to T, + dT,,, is depicted in Fig. 8. Once the 
latency hiding ability of the architecture on a particular 
code has been exhausted, any additional main memory 
latency will simply add to the non-overlapped time t”. In 
this case, the new cpi (from Eq. 1, where the sum is over 
the L2 cache and main memory) will be: 

cpi’= cpi, + h2t2 +h,(t,,, + dT,) 

Figure 8. Relationship of modeled times 

This equation predicts a linear relationship between 
dTm and cpi’ of slope h,. If any additional memory 
latency incurred by dTm can be hidden, the increase in cpi 
will be strictly less than that predicted by Equation 4.. 
That is, the relationship is an upperbound for the increase 
in time due to memory latency. This analysis will be 
used and verified in a later section. 

5. Measurements and validation 

5.1. Measurements 

The model described in the previous section provides 
the foundation for an analysis of the Origin 2000’s 
architectural features on application performance. 
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Measured vs Calculated 
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Figure 9. Model fit for codes with varying problem sizes 

The first key issue is determination of the amount of Table 1 shows the model parameters for each of the 
memory access time that is overlapped by computation. LANL benchmark codes determined from a data set of 
Although this overlap is not directly measurable using executions on the I-MB L2 PowerChallenge. The least 
the RlOOOO performance counters, we can infer the square fit generally has errors that are less than 6%. The 
overlap for an individual application by fitting empirical maximum latencies, T,, are measured with LMBENCH 
performance data obtained from its execution using [lo] and are found to be consistent with numbers 
different problem sizes. published by SGI. 

RlOOOO performance counters supply measurements 
of the total execution cycles and total graduated 
instructions. The ratio of these two measurements gives 
the overall cpi of the application. The hit ratios (coming 
from the same application executing on different 
problem sizes) are also directly measurable and the 
unknowns in Equation 1 become the average times, t!, 
and cpi,. The value of cpi, can be obtained by measuring 
the cpi of a problem that fits entirely in the Ll cache. 
The remaining unknowns are inferred from the measured 
data by a least squares fit constrained such that 

Table 1. Model parameters for each code 
(PowerChallenge) 

5.2. Validation 

0 <= t, <= T,, Validation of the inferred model parameters is 
accomplished using the model to predict performance on 
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Table 2. Memory access times, t, , for the PowerChallenge, Origin 2000, and Intel ASCI Red 

a different machine configuration. Original data from a 
PowerChallenge with a I-MB secondary cache is used to 
determine the unknown model parameters which are then 
used to predict the performance of each code on a 2-MB 
PowerChallenge. Figure 9 shows that the fit is extremely 
close. 

6. Results and analysis 

6.1. Analysis of stall time due to memory accesses 

Table 2 compares the memory access times, tt, for the 
benchmark codes on the PowerChallenge, the Origin 
2000, and the Intel AX1 Red supercomputer. In 
general, L2 cache accesses are completely overlapped 
with computation (low values of tJ for the comparable 
Origin 2000 and PowerChallenge. Additionally, the 
observed values of tm suggest that about one-half of the 
main memory latency is hidden on the PowerChallenge, 
and Origin 2000. The exception is SWEEP (not 
measured on Intel Red) where the value of 1 lcps for t,,, 
indicates that accesses to the secondary cache are not 
overlapped. The reason that SWEEP stands out may be 
due to loop-carried dependencies in the inner loops. 
These dependencies present less prefetch opportunities 
for the compiler and result in less overlap of processor 
execution with memory accesses. We believe that the 
model parameters for NEUT may be inaccurate. There is 
so little time associated with the memory accesses for 
NEUT (due to high cache-hit ratios; see Figure 6) that 
small absolute least square errors can result in large 
relative changes to the parameters. 

Table 2 also shows effects attributed to the number of 
usable registers on the two different microprocessors, 
namely the MIPS RlOOOO, and Intel Pentium Pro. The 
200MHz RlOOOO provides 64 registers [5a] whereas the 
200MHz Pentium Pro allows at most 40 registers for 
general use [ 151. This gap in registers available degrades 
overlap performance as expected leading to a higher 
percentage of overlap work performed by both the Origin 
2000 and PowerChallenge. This is directly confirmed by 
the higher percentage of non-overlapped access time (out 

of nominal full latency) for HYDRO on Intel ASCI Red 
in both L2 and memory levels. 

Figures 10, 11, and 12 show graphs of cpi,,d,, relative 
to the overall cpi for all machines on most codes. The 
second half of each figure shows the corresponding 
overlap parameter, m,,. A number of general 
observations are apparent from the graphs. The overall 
cpi on the Origin is typically less by factors of up to 
three (see also Luo, et al. [7]) on the PowerChallenge and 
consistently less than those measured on the Intel ASCI 
Red. The percentage of cpi represented by stall time on 
the Origin can be less than 40%, while, on the 
PowerChallenge, it can be as large as 80%. Two codes, 
HYDRO-T and NEUT, exhibit high locality of reference 
and cpu stalls due to memory accesses are less than 10% 
of the total time. A study of the 
algorithms/implementations of these codes would lead 
one to expect this. NEUT has a modest number of scalar 
variables per particle that are used many times before 
another particle is computed (high temporal locality). 
HYDRO-T is a 2D code and was re-coded from the 
original HYDRO so inner loops have stride-l 
vectorizable loops (high spatial locality). The success of 
the transposition can be seen by comparing each version 
in the figures. 

Memory overlap parameters are higher on the Origin 
than on the PowerChallenge, indicative of the better 
latency hiding capability of the Origin. As discussed 
previously, and confirmed by the overlap parameters, the 
Intel ASCI Red maintains an even lower hiding 
capability than both the Origin and the PowerChallenge. 
Two extreme examples are given: HYDRO-T with very 
high overlap, and SWEEP (not shown for the Intel ASCI 
Red), with very low overlap. The high spatial locality of 
HYDRO-T means that there is a great deal of parallelism 
between L 1, L2 and main memory accesses. 
Additionally, on the Origin 2000, major portions of this 
2-D algorithm tit entirely in the 4-MB L2 cache. In 
contrast, SWEEP shows much less overlap on either the 
PowerChallenge or the Origin. This is consistent with 
the information in Table 2 in which we attributed to 
loop-carried dependencies. The results for NEUT, where 
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the PowerChallenge shows high overlap and the Origin 
shows very low overlap, are again due to the large 
parameter changes associated with the least-squares fit 
mentioned above. 

6.2. Separate contributions to the stall time. 

latency to main memory seen by an executing thread, by 
placing the thread and its associated data on two different 
nodes of the Origin. Figures 13 displays the 
measurements for HEAT (HYDRO, HYDRO-T and 
SWEEP are similar) showing the effect of memory 

As described in Section 1, we performed an 
experiment in which we systematically varied Tm, the 
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CPI vs CPI stall 

Figure 12. Memory stall & overlap parameters (Intel ASCI Red) 
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Figure 13. Observed HEAT CPI vs. Memory latency (Origin 2000) 

latency on the measured cpi. A linear dependency is 
observed in agreement with Eq. 4, where the slope is 
bounded by h,,,(see discussion in Section 4). 

Using these measurements and other empirical data 

We wish to find the contributing factors, f,, $,, and f, 
(corresponding to cache, outstanding misses and memory 
latency, respectively) such that: 

on the two machines, we can infer the separate the F=fc*fo*fm. (6) 
contribution of cache size, memory latency and number 
of outstanding misses to the improved cpi of the Origin These factors can be defined as follows: 
over the PowerChallenge. Let F be a measure of this 
overall improvement: 

(5) 

f = hcC t2’C + hcC t? + cpi, 
c 

h4)t2PC + hf t? + cpi, 
(7) 
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f. = 
hftF + hztz + cpi, 

cpi” 
(8) 

.0* 

fm = 
CPl 

hftf + h,ft,f + cpi, ’ 
(9) 

The denominator inf, can be viewed as the cpi of a 
virtual machine whose characteristics are identical to 
those of the PowerChallenge but with L2 cache size 
equal to that of the Origin (4MB L2). The larger cache 
size simply changes the hit ratios, PC hi , to h,!. 
Similarly, the denominator in f, represents the cpi of a 
virtual machine identical to the Origin except for a 
memory latency equal to that of the PowerChallenge. 
The cpi*’ for this machine is measured as illustrated in 
Figure 13 (when the memory latency is around 201 

cycles). The quantity,f;, then, is the ratio of the actual 
PowerChallenge to a Power Challenge with the Origin’s 
cache. The quantity,fO, is the ratio of this “larger cache” 
PowerChallenge to an Origin with larger memory 
latency. Finally, the quantity,fm, is the ratio of this “large 
latency” Origin to the real Origin. The separate factors 
satisfy the relationship in Eq.6. Each of these factors is 
listed in Table 3, along with the calculated and observed 
values, F, for the codes. The calculated and observed 
speedups are in good agreement. With the exception of 
HYDRO and a small HEAT problem, the values off; are 
1 .O- 1.1 indicating that the effect of a larger L2 cache is 
negligible. The values ofA, are also quite small (most 
showing 10% or less improvement). The overall 
improvement for over half of the benchmark codes 
comes from the increased number of outstanding misses 
on the Origin. About 75% of the total improvement of 
the larger HEAT problems and 50% to 80% of SWEEP 
come from this feature. 

Table 3. Observed and calculated performance on the Origin2000 

7. Conclusions 

This paper describes a methodology using a simple 
memory model with empirical parameters that accounts 
for the overlap of single processor execution with 
memory accesses. This method is applied to real 
applications using performance counter data available on 
actual machines. In general, this model quantifies the 
amount of overall time that is spent on memory accesses 
for each application. On the PowerChallenge, the 
memory access time can be as large as 80% of the 
overall execution time. On the Origin 2000, the memory 

access time is less than 40%. Probably not directly 
comparable due to inherent architecture differences, the 
Intel ASCI Red showed stall times less than 20% for the 
limited codes provided; we would expect these to grow 
significantly for codes such as SWEEP3D. Using this 
model, we discover that the increased number of 
outstanding misses in the Origin 2000 is a major 
contributing factor to the performance improvement in 
two out of four codes. The effect of cache size on the 
performance of these codes is generally much less 
important except for a code with poor cache reuse 
(HYDRO). Currently, the methodology is an excellent 
diagnostic tool that can provide information about the 
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actual time that an application spends in memory 
accesses. This model can be eventually incorporated into 
a performance tool. The methodology can also be 
applied to any architecture with the necessary hardware 
counter information. Further work in our group is 
currently underway to model other microprocessor 
systems such as the IBM RS/6000 and to increase the 
spectrum of observed codes for the Intel ASCI Red 
machine. Future work will attempt to enhance the 
predictive capability of the model and to develop a 
software performance tool based on this methodology. 

Acknowledgements 

We thank Jim Schwarzmeier (SGI/Cray) who 
reviewed the paper and contributed many thoughtful 
suggestions for improvement and future work. Also we 
extend thanks to Pat Fay of Intel for insight into the 
workings of the ASCI Red performance counters. 

References 

[I] Wulf, W. A. and McKee, S. A. “Hitting the Memory Wall: 
Implications of the Obvious,” Computer Architecture News, 
Association for Computing Machinery, March, 1995. 

[2] Burger, D. C., Goodman, J. R., and Kagi, A., “The 
Declining Effectiveness of Dynamic Caching for General- 
Purpose Microprocessors,” Univ. Wisconsin Computer 
Sciences Tech. Report CS-TR-95- 1261, Jan. 1995, and 
references therein. 

[3] Galles, M. and Williams, E., “Performance Optimizations, 
Implementation, and Verification of the SGI Challenge 
Multiprocessor,” Silicon Graphics Computer Systems, ,” 
Silicon Graphics Computer Systems, Mountain View, CA 
web paper 
http:ilwww.sgi.comlTechnologyichaIlengegaper.htmI. 

[4] Laudon, J. and Lenowski, D., “The SGI Origin: A 
ccNUMA Highly Scalable Server,” Proc. Compcon 
Spring. 1997, IEEE Computer Society, Los Alamitos, 
California. 

[5] (a) MIPS Technologies, Inc., “RI0000 Microprocessor 
Product Overview,” MIPS Product Preview, 1995. (b) 
Yeager, K. C., “The MIPS RlOOOO Superscalar 
Microprocessor,” IEEE Micro, April, 1996, pp 28-40. 

[61 Zagha, M., Larson, B., Turner, S., and ltzkowitz, M., 
“Performance Analysis Using the MIPS Rl 0000 

Performance Counters,” Proc. Supercomputing ‘96, IEEE 
Computer Society, Los Alamitos, California, 1996. 

[7] Luo, Y., Lubeck, O.M., and Wasserman, H. J., 
“Preliminary Performance Study of the SGI Origin2000,” 
Los Alamos National Laboratory Unclassified Release LA- 
UR -. 1997. 

[8] Koch, K. R., Baker, R. S. and Alcouffe, R. E., “Solution of 
the First-Order Form of the 3-D Discrete Ordinates 
Equation on a Massively Parallel Processor,” Trans. of the 
Amer. Nut. Sot., 65, 198, 1992. 

[9] W. D. Schulz, “Two-Dimensional Lagrangian 
Hydrodynamic Difference Equations,” Methods in 
Computational Phys. Vol 3, pl, 1964. 

[lo] McVoy, L. and Staelin, C., “lmbench: Portable Tools for 
Performance Analysis,” 

[l l] Vernon, M.V, Lazowska, E. D., and Zahorjan, J., “An 
Accurate and Efficient Performance Analysis Technique for 
Multiprocessor Snooping Cache-consistency Protocols,” in 
Proc. 15th Annu. Symp. Comput. Architecture, Honolulu, 
HI, June, 1988, pp 308-315. 

[ 121 Larson, B., Silicon Graphics Computer Systems, private 
communication, January, 1997. 

[ 131 Turner, S., Silicon Graphics Computer Systems, private 
communication, January, 1997. 

[ 141 Bhandarkar, D. and Cvetanovic, Z., “Performance 
Characterization of the Alpha 2 1164 Microprocessor Using 
TP and SPEC Workloads,” Proc. Second. Int. Sypm. on 
High-Perf. Comp. Arch., IEEE Computer Society Press, 
Los Alamitos Ca., 1996. 

[ 151 Bhandarkar, D. and Ding, J., “Performance 
Characterization of the Pentium Pro Processor, “ Proc. 
Third. Int. Sypm. on High-Perf. Comp. Arch., IEEE 
Computer Society Press, Los Alamitos Ca., pp 288-297, 
1997. 

[ 161 Mattson, T. and Henry, G., “An Overview of the Intel 
TLFOPS Supercomputer”, Intel Technical Journal, Jan. 
1998. 

[ 171 Sandia National Lab, “The ASCI Red TFLOPS 
Supercomputer”, httn:l/www.sandia.goviASCI!Red!, Nov. 
1996. 

163 


